Informatica to Fabric Migration | CONFIDENTIAL

INFORMATICA TO FABRIC
MIGRATION GUIDE

Mappings • Transformations • Workflows • Sessions • Patterns

Version 1.0 | January 2026

Table of Contents

1. Migration Overview
This guide provides patterns for migrating Informatica PowerCenter mappings and workflows to Microsoft Fabric. Understanding the architectural differences is key to successful migration.
1.1 Concept Mapping
	Informatica
	Fabric

	Repository
	Workspace

	Folder
	Workspace / Lakehouse

	Mapping
	Dataflow Gen2 / Notebook

	Workflow
	Pipeline

	Session
	Pipeline Activity

	Source/Target Definition
	Connection / Lakehouse Table

	Transformation
	Dataflow Transform / Spark Function

	Parameter/Variable
	Pipeline Parameter

1.2 Migration Approach
1. 1. Export Informatica metadata (XML/repository)
1. 2. Analyze mapping complexity
1. 3. Choose target: Dataflow Gen2 or Notebook
1. 4. Convert transformations using patterns
1. 5. Rebuild workflows as pipelines
1. 6. Validate data output matches

2. Transformation Mapping
2.1 Source & Target
Informatica: Source Qualifier with SQL override

Fabric Notebook:
Read with custom query
df = spark.read.format('jdbc') \
 .option('query', '''
 SELECT member_id, claim_id, amount
 FROM claims WHERE status = 'ACTIVE'
 ''') \
 .load()

Or from Lakehouse
df = spark.table('bronze.claims')
2.2 Expression Transformation
Informatica Expression:
 TOTAL_AMT = CLAIM_AMT + COPAY_AMT
 STATUS_DESC = IIF(STATUS='A','Active','Inactive')

PySpark:
df = df.withColumn('total_amt', col('claim_amt') + col('copay_amt'))
df = df.withColumn('status_desc',
 when(col('status') == 'A', 'Active').otherwise('Inactive')
)
2.3 Filter Transformation
Informatica Filter: AMOUNT > 0 AND STATUS = 'A'

PySpark:
df = df.filter((col('amount') > 0) & (col('status') == 'A'))

Or with SQL expression
df = df.filter("amount > 0 AND status = 'A'")

3. Advanced Transformations
3.1 Aggregator
Informatica Aggregator:
 Group By: REGION, PRODUCT
 Output: SUM(AMOUNT), COUNT(*)

PySpark:
df = df.groupBy('region', 'product').agg(
 sum('amount').alias('total_amount'),
 count('*').alias('record_count')
)
3.2 Joiner
Informatica Joiner: Master (claims) Detail (members)
 Condition: claims.member_id = members.member_id
 Join Type: Normal (Inner)

PySpark:
df = claims.join(
 members,
 claims['member_id'] == members['member_id'],
 'inner'
).drop(members['member_id'])
3.3 Lookup
Informatica Lookup:
 Table: dim_provider
 Condition: IN_PROVIDER_ID = PROVIDER_ID
 Return: PROVIDER_NAME, SPECIALTY

PySpark:
Broadcast for small lookup tables
from pyspark.sql.functions import broadcast

provider_lookup = spark.table('dim_provider') \
 .select('provider_id', 'provider_name', 'specialty')

df = df.join(
 broadcast(provider_lookup),
 df['provider_id'] == provider_lookup['provider_id'],
 'left'
)

4. More Transformations
4.1 Router (Conditional Split)
Informatica Router:
 Group 1: AMOUNT > 10000 (High Value)
 Group 2: AMOUNT > 1000 (Medium Value)
 Default: Low Value

PySpark:
high_value = df.filter(col('amount') > 10000)
medium_value = df.filter((col('amount') > 1000) & (col('amount') <= 10000))
low_value = df.filter(col('amount') <= 1000)
4.2 Rank
Informatica Rank:
 Group By: MEMBER_ID
 Rank By: SERVICE_DATE DESC
 Top: 1

PySpark:
from pyspark.sql.window import Window

window = Window.partitionBy('member_id') \
 .orderBy(desc('service_date'))

df = df.withColumn('rank', row_number().over(window))
df = df.filter(col('rank') == 1).drop('rank')
4.3 Normalizer/Pivot
Informatica Normalizer (unpivot):

PySpark (unpivot):
from pyspark.sql.functions import expr
df = df.selectExpr(
 'member_id',
 "stack(3, 'Q1', q1_amt, 'Q2', q2_amt, 'Q3', q3_amt) as (quarter, amount)"
)

5. Workflow Migration
5.1 Workflow → Pipeline
Informatica Workflow:
 Start → Session1 → Decision → Session2/Session3 → End

Fabric Pipeline:
{
 "activities": [
 {"name": "Load_Bronze", "type": "Notebook"},
 {"name": "Check_Count", "type": "IfCondition",
 "expression": "@greater(activity('Load_Bronze').output.rowCount, 0)",
 "ifTrueActivities": [{"name": "Transform_Silver"}],
 "ifFalseActivities": [{"name": "Send_Alert"}]
 }
]
}
5.2 Session Properties
	Informatica Session
	Fabric Equivalent

	Commit Interval
	Spark write batch size

	DTM Buffer Size
	Spark executor memory

	Treat source rows as
	Delta merge/overwrite mode

	Error handling
	Pipeline failure activities

6. Best Practices
6.1 Migration Guidelines
1. Convert simple mappings to Dataflow Gen2
1. Use Notebooks for complex transformations
1. Maintain data lineage documentation
1. Test with full data volumes
1. Compare row counts and checksums
1. Migrate in phases by business domain
6.2 Performance Optimization
1. Use broadcast joins for small lookups
1. Partition data appropriately
1. Cache frequently used DataFrames
1. Optimize Spark configurations
1. Leverage Delta Lake for incremental loads
6.3 Common Challenges
	Challenge
	Solution

	Mapplet conversion
	Convert to Python functions

	Custom Java transforms
	Rewrite as PySpark UDFs

	Pre/Post SQL
	Add Script activities to pipeline

	Parameter files
	Use pipeline parameters

Appendix: Document Information
	Document Title
	Informatica to Fabric Migration Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
